If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+8x=100
We move all terms to the left:
2x^2+8x-(100)=0
a = 2; b = 8; c = -100;
Δ = b2-4ac
Δ = 82-4·2·(-100)
Δ = 864
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{864}=\sqrt{144*6}=\sqrt{144}*\sqrt{6}=12\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-12\sqrt{6}}{2*2}=\frac{-8-12\sqrt{6}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+12\sqrt{6}}{2*2}=\frac{-8+12\sqrt{6}}{4} $
| 16(5-4v)=-5-v | | 4x=-61/4 | | 1/2(6x-10)=7x+15 | | -5y=102 | | 11x-6=-5x-4 | | 14x+3=7×-39 | | 4(2x-9)=4(2x−9)=4 | | 85+3x=7 | | (103-x)+x+18=103 | | -0.1x=-3 | | 5(y+4)=8y+41 | | 3x-(x-2)=-8(6+6x) | | 160=2h-2h | | m+3.4=9.9 | | t-32=-23 | | 210=7.5x | | k4-3=6 | | 10x=21x | | 43=1.5x+4 | | F(x)=10x^2-50x-60 | | 1/12c=0.6 | | (3/4)z=144 | | 6(t+1=9(t+4) | | 3/4z=144 | | 6(t+10=9(t+4) | | 0.9=k/81 | | -22-v=-7(v+4) | | 16/6=5e | | 9w=-56 | | 3x+7-8x-15=17 | | 12.2=x-12.3 | | (4y-7)/5=1 |